

ADX-097, a tissue targeted complement inhibitor

Stefan Wawersik, PhD VP, Head of Research and Translational

3rd Rare and Genetic Kidney Disease Drug Development Meeting Boston, MA

13 Sept. 2023

Complement is an important driver of disease...

...but complement is also an immune & homeostatic mediator

Dysregulated local complement drives autoimmune diseases

Kidney

- aHUS
- PNH
- Lupus NephritisIgA Nephropathy

Skin

- Bullous Pemphigoid
- Hidradenitis suppurativa (HS)
- Discoid Lupus Erythematosus (DLE)

Neurodegenerative

- Myasthenia Gravis
- Multiple Sclerosis

Eye

- Geographic Atrophy
- Autoimmune Uveitis

Complement mediates homeostatic and immune functions

Systemic/non-targeted complement inhibition has inherent limitations

Complement contributes to pathology of myriad diseases. However, few drugs have made it to the final regulatory approval. **Why?**

- Large target sinks (e.g., circulating C3 levels are >1.0 mg/mL)
 - Some targets upregulated in disease (e.g. factor D, factor B)
- Rapid target turnover
 - Half-lives ranging from hours to a few days
- Need to maintain the protective roles of complement
 - Infection clearing
 - Shaping of adaptive immune response
 - Cross talk with coagulation and other systems

Q32 Bio is generating tissue-targeted complement inhibitors to address the limitations of systemic blockade

Complement is regulated by C3 and C5 convertases

C3d is locally deposited where complement is active

@32 BIO

High density C3d deposition is observed in numerous complementassociated kidney diseases

anti-C3d immunofluorescence

Disease

Negative controls

Acute Tubular Necrosis

IgA Nephropathy

Lupus Class IV

Lupus Class V

Minimal Change Disease

Thin Glomerular BM

MPGN

Membranous (PLAR2+)

C3 Glomerulopathy

Diabetic Nephropathy

ADX-097 binds C3d and localizes factor H to complement in tissues

@32 BIC

ADX-097 binds high-density C3d with high affinity

ADX-097 binds high-density C3d with greater affinity than to low density C3d

Affinity measurements (SPR) with increasing C3d density

C3d mAb-fH₁₋₅ potently and durably reduces glomerular complement while avoiding systemic complement inhibition

©32 BIC

C3d mAb-fH₁₋₅ potently and durably reduces glomerular complement while avoiding systemic complement inhibition

Factor H knockout (CfH^{-/-}) mice

Loss of factor H leads to uncontrolled complement

Durable tissue complement inhibition without systemic blockade

Single subcutaneous administration of mouse C3d mAb – fH_{1-5} (ADX-118)

measured by immunofluorescence

Tissue

PK/PD

5 mg/kg

1 mg/kg 18· 15 max. C3 inh 12 0 12 17 22 Days

C3d mAb-fH₁₋₅ potently and durably reduces glomerular complement while avoiding systemic complement inhibition

Loss of factor H leads to low plasma C3 intact plasma C3 circ. complement activity circ. complement activity intact plasma C3 Drug clearance intact plasma C3 circ. complement activity **032** BIC

Factor H knockout (CfH^{-/-}) mice

Durable tissue complement inhibition without systemic blockade Single subcutaneous administration of mouse C3d mAb – fH_{1-5} (ADX-118)

ADX-097 inhibits NHP skin complement activation at doses that do not affect systemic complement activity

Immunostaining of ADX-097 and Inhibition of Complement Activation

48h post-dose

Quantitation of Tissue and Circulating PK/PD

ADX-097 reduces disease progression by locally inhibiting tissue complement

- ADX-097 homes to local complement through C3d binding
- Subcutaneous delivery at doses that do not affect systemic complement

Passive Heymann Nephritis (PHN) is a complement-driven model of Membranous Nephropathy in rats

Passive Heymann Nephritis (PHN): Injection With Sheep anti-GBM Serum Induces Rapid, Immune Deposit-Driven Renal Injury

Study Design: Evaluation of ADX-097 in PHN

ADX-097 homes to PHN glomeruli and inhibits local complement activation

ADX-097 reduces proteinuria and inhibits glomerular complement at doses that <u>do not</u> block systemic complement activity

ADX-097 Inhibits <u>Tissue</u> Complement at Doses ≥ 1 mg/kg

Glomerular Complement - anti-C3 frag. IHC

Low Doses of ADX-097 Do Not Inhibit <u>Systemic</u> Complement

Serum Complement Activity - Zymosan Assay

ADX-097 Reduces Renal Injury (Proteinuria) at Doses ≥ 1 mg/kg Urine Protein/Creatinine Ratio

* P < 0.01, ** P < 0.005, *** P < 0.0001 (vs. PHN + PBS) CVF = Cobra Venom Factor (systemic complement inhibitor)

Tissue targeting improves renal potency in Passive Heymann Nephritis rats

ADX-097 dose-dependently attenuates proteinuria

Tissue targeting drives potency of ADX-097

ADX-097 preserves podocyte ultrastructure

Hui Chen, Joel Henderson Boston University Medical School

Changes in C5b-9 are associated with complement-driven disease

Terminal C5b-9 complement complex mediates cell lysis

C5b-9 is deposited in diseased kidney tissue

meta-analysis by Koopman et al., Front. Immunol., 2021

C5b-9 can be detected in urine and can be a marker of treatment response in IgAN

data from Yu et al., J. Clin Med. 2022

steroid response

steroid non-response

Key question: How does urine C5b-9 relate to tissue C5b-9?

Samples from studies of ADX-097 in PHN allow evaluation of relationship between tissue complement and urine C5b-9

ADX-097 Inhibits <u>Tissue</u> Complement at Doses ≥ 1 mg/kg

Glomerular Complement - anti-C3 frag. IHC

Low Doses of ADX-097 Do Not Inhibit <u>Systemic</u> Complement

Serum Complement Activity - Zymosan Assay

ADX-097 Reduces Renal Injury (Proteinuria) at Doses ≥ 1 mg/kg Urine Protein/Creatinine Ratio

Urine C5b-9 is a biomarker of tissue complement and demonstrates kinetics of tissue target engagement

ADX-097 dose-dependently reduces urine C5b-9

Urine C5b-9/Creatinine Ratio Samples collected 4 days post-dose

Urine C5b-9 closely correlates with tissue complement activity

Urine C5b-9/Creatinine Ratio vs Glomerular C3 IHC Samples collected 4 days post-dose

Urine C5b-9 reveals kinetics of tissue complement inhibition by ADX-097

Urine C5b-9/Creatinine Ratio

ADX-097 reduces disease progression by locally inhibiting tissue complement

- ADX-097 homes to local complement through C3d binding
- Subcutaneous delivery at doses that do not affect systemic complement
- Modulates disease progression
- Soluble C5b-9: a urine biomarker of tissue complement activity
- Completing Ph1 clinical trial

Thanks!

Q32 Bio Anne Cheung Kelly Fahnoe **Ryan Faucette Claire Galand** Fei Liu Jennifer Morgan Sarah Ryan **Ravi Vats Katherine Vernon** Shelia Violette Hong Wu

032 BIC

Collaborators

Monica Locatelli, Ariela Benigni, Giuseppe Remuzzi (Istituto di Ricerche Farmacologiche Mario Negri)

Katja Bieber, Enno Schmidt, Admar Verschoor, Ralf Ludwig (University of Lubeck)

Shuyun Xu, Christine Lian (Brigham & Women's Hospital, Harvard Medical School)

David Salant (Boston University School of Medicine)

Hui Chen, Joel Henderson (Boston University School of Medicine)

Q32 Co-founders

Mike Holers (University of Colorado School of Medicine) Josh Thurman (University of Colorado School of Medicine) Steve Tomlinson (Medical University of South Carolina)

